Random Notes
  • Introduction
  • Reading list
  • Theory
    • Index
      • Impossibility of Distributed Consensus with One Faulty Process
      • Time, Clocks, and the Ordering of Events in a Distributed System
      • Using Reasoning About Knowledge to analyze Distributed Systems
      • CAP Twelve Years Later: How the “Rules” Have Changed
      • A Note on Distributed Computing
  • Operating System
    • Index
  • Storage
    • Index
      • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
      • Exploiting Commutativity For Practical Fast Replication
      • Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
      • Building Consistent Transactions with Inconsistent Replication
      • Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System
      • Spanner: Google's Globally-Distributed Database
      • Bigtable: A Distributed Storage System for Structured Data
      • The Google File System
      • Dynamo: Amazon’s Highly Available Key-value Store
      • Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
      • Replicated Data Consistency Explained Through Baseball
      • Session Guarantees for Weakly Consistent Replicated Data
      • Flat Datacenter Storage
      • Small Cache, Big Effect: Provable Load Balancing forRandomly Partitioned Cluster Services
      • DistCache: provable load balancing for large-scale storage systems with distributed caching
      • Short Summaries
  • Coordination
    • Index
      • Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases
      • Paxos made simple
      • ZooKeeper: Wait-free coordination for Internet-scale systems
      • Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering
      • Keeping CALM: When Distributed Consistency is Easy
      • In Search of an Understandable Consensus Algorithm
      • A comprehensive study of Convergent and Commutative Replicated Data Types
  • Fault Tolerance
    • Index
      • The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services
      • Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
      • Capturing and Enhancing In Situ System Observability for Failure Detection
      • Check before You Change: Preventing Correlated Failures in Service Updates
      • Efficient Scalable Thread-Safety-Violation Detection
      • REPT: Reverse Debugging of Failures in Deployed Software
      • Redundancy Does Not Imply Fault Tolerance
      • Fixed It For You:Protocol Repair Using Lineage Graphs
      • The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance
      • Lineage-driven Fault Injection
      • Short Summaries
  • Cloud Computing
    • Index
      • Improving MapReduce Performance in Heterogeneous Environments
      • CLARINET: WAN-Aware Optimization for Analytics Queries
      • MapReduce: Simplified Data Processing on Large Clusters
      • Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
      • Resource Management
      • Apache Hadoop YARN: Yet Another Resource Negotiator
      • Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • Large-scale cluster management at Google with Borg
      • MapReduce Online
      • Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
      • Reining in the Outliers in Map-Reduce Clusters using Mantri
      • Effective Straggler Mitigation: Attack of the Clones
      • Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
      • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
      • Sparrow: Distributed, Low Latency Scheduling
      • Making Sense of Performance in Data Analytics Framework
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • Drizzle: Fast and Adaptable Stream Processing at Scale
      • Naiad: A Timely Dataflow System
      • The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale
      • Interruptible Tasks:Treating Memory Pressure AsInterrupts for Highly Scalable Data-Parallel Program
      • PACMan: Coordinated Memory Caching for Parallel Jobs
      • Multi-Resource Packing for Cluster Schedulers
      • Other interesting papers
  • Systems for ML
    • Index
      • A Berkeley View of Systems Challenges for AI
      • Tiresias: A GPU Cluster Managerfor Distributed Deep Learning
      • Gandiva: Introspective Cluster Scheduling for Deep Learning
      • Workshop papers
      • Hidden Technical Debt in Machine Learning Systems
      • Inference Systems
      • Parameter Servers and AllReduce
      • Federated Learning at Scale - Part I
      • Federated Learning at Scale - Part II
      • Learning From Non-IID data
      • Ray: A Distributed Framework for Emerging AI Applications
      • PipeDream: Generalized Pipeline Parallelism for DNN Training
      • DeepXplore: Automated Whitebox Testingof Deep Learning Systems
      • Distributed Machine Learning Misc.
  • ML for Systems
    • Index
      • Short Summaries
  • Machine Learning
    • Index
      • Deep Learning with Differential Privacy
      • Accelerating Deep Learning via Importance Sampling
      • A Few Useful Things to Know About Machine Learning
  • Video Analytics
    • Index
      • Scaling Video Analytics on Constrained Edge Nodes
      • Focus: Querying Large Video Datasets with Low Latency and Low Cost
      • NoScope: Optimizing Neural Network Queriesover Video at Scale
      • Live Video Analytics at Scale with Approximation and Delay-Tolerance
      • Chameleon: Scalable Adaptation of Video Analytics
      • End-to-end Learning of Action Detection from Frame Glimpses in Videos
      • Short Summaries
  • Networking
    • Index
      • Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec and a Transport
      • Learning in situ: a randomized experiment in video streaming
      • Short Summaries
  • Serverless
    • Index
      • Serverless Computing: One Step Forward, Two Steps Back
      • Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads
      • SAND: Towards High-Performance Serverless Computing
      • Pocket: Elastic Ephemeral Storage for Serverless Analytics
      • Fault-tolerant and Transactional Stateful Serverless Workflows
  • Resource Disaggregation
    • Index
  • Edge Computing
    • Index
  • Security/Privacy
    • Index
      • Differential Privacy
      • Honeycrisp: Large-Scale Differentially Private Aggregation Without a Trusted Core
      • Short Summaries
  • Misc.
    • Index
      • Rate Limiting
      • Load Balancing
      • Consistency Models in Distributed System
      • Managing Complexity
      • System Design
      • Deep Dive into the Spark Scheduler
      • The Actor Model
      • Python Global Interpreter Lock
      • About Research and PhD
Powered by GitBook
On this page
  • Efficient Queue Management for Cluster Scheduling - Rasley et al., EuroSys 16
  • Lineage Stash: Fault Tolerance Off the Critical Path - Wang et al., SOSP' 19
  • Taiji: managing global user traffic for large-scale internet services at the edge - Chou et al., SOSP' 19
  • Yak: A High-Performance Big-Data-Friendly Garbage Collector - Nguyen et al., OSDI' 16
  • EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding - Rashmi et al., OSDI' 16

Was this helpful?

  1. Cloud Computing
  2. Index

Other interesting papers

PreviousMulti-Resource Packing for Cluster SchedulersNextIndex

Last updated 5 years ago

Was this helpful?

- Rasley et al., EuroSys 16

The key observation of this paper is that 1) the RM is in the critical path of all scheduling decisions; 2) whenever a task finishes, resources can remain fallow between heartbeats. The solution proposed is to create a queue for each node manager. However, simply maintaining a queue of tasks at worker nodes does not directly translate to benefits in JCT. Thus, the authors described techniques to 1) determine the queue length 2) decide the node to which each task will be placed for queuing. 3) prioritize the task execution by reordering the queue.

However, I have some concerns about the queue management algorithm: 1). based on my understanding, the node will notify the RM upon task completion, not through heartbeat messages. Given that the latency within datacenter is negligible, such design won't give us much benefits. 2) the queue length is predefined by the master. However, I feel that a dynamic queue length is better because it can deal with latency spikes and temporary master failure. 3). Likewise, to incorporate latency variations, different nodes should have different queue length. In our work, sol, we solved a similar problem using dynamic and variable queue length.

- Wang et al., SOSP' 19

The Motivation of this project is to provide a mechanism for fault-tolerance that has low runtime and recovery overheads. The basic idea is to ask each node forward the lineage of each of the task's inputs with the task invocation and asynchronously flush each stash to a global but physically decentralized stable storage system. This way, the node executing the task has all the information(from the received lineage and information in the persistent storage) to reconstruct the task's inputs, if necessary. The lineage stash looks very promising for providing lightweight fault-tolerance for fine-grain data processing systems.

- Chou et al., SOSP' 19

This paper discusses how Facebook route user traffic to its data centers. The main objectives are 1) route users for effective utilization of data centers, 2) route users for a fast experience and 3) achieve high cache efficiency. The key ideas of Taji are: 1) we can formulate traffic routing as an assignment problem that models the constraints and optimization goals set by a service and 2) users in a shared community (follow/friend/subscribe) engage with similar content, so we can group them and route each group to the same data center.

- Nguyen et al., OSDI' 16

This paper is motivated by the problem of large garbage collection(GC) overhead in big data frameworks. (GC can account for up to 50% of the execution time). The key insight is that a typical data processing framework often has a clear logical distinction between a control path and a data path. These two paths follow different lifetime behaviors: data path shows epoch-based object lifetime patterns, whereas the much-smaller control space follows the classic .(i.e., generation hypothesis)

Based on this observation, Yak divides the managed heap into a control space(CS) and a data space(DS) and it requires the programmer to mark the beginning and end points of each epoch in the program. Objects created inside each epoch are allocated in the DS, while those created outside are allocated in the CS. Yak manages all data-space objects using epoch-based regions and deallocates each region as a whole at the end of an epoch.

Side Notes:

  • The Control path performs cluster management and scheduling, establishes communication channels between nodes, and interacts with users to parse queries and return results.

  • The Data path primarily consists of data manipulation functions that can be connected to form a data processing pipeline.(e.g., data partition or built-in operations.)

- Rashmi et al., OSDI' 16

The popularity of objects in cluster caches are heavily skewed, and, as a result, load imbalance is one of the key challenges toward improving the performance of cluster caches. The existing selective replication approach will incur at least 2x memory overhead.

As an alternative approach to selective replication, this paper proposes EC-cache, an erasure coding-based approach. EC-cache divides individual objects into k splits and creates r additional parity splits.(Note that, traditionally, erasure coding is applied across objects). Benefits: spreading the load of read requests across both data and parity splits result in better load balancing and 2) reading/writing in parallel from multiple splits provides better I/O performance. The second technique of EC-cache is late binding: instead of reading exactly k splits, we can read more than k splits and wait for the reading of any k splits to complete.

*EC-cache offers advantages only for objects greater than 1MB.

Efficient Queue Management for Cluster Scheduling
Lineage Stash: Fault Tolerance Off the Critical Path
Taiji: managing global user traffic for large-scale internet services at the edge
Yak: A High-Performance Big-Data-Friendly Garbage Collector
generational lifetime behavior
EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding