Random Notes
  • Introduction
  • Reading list
  • Theory
    • Index
      • Impossibility of Distributed Consensus with One Faulty Process
      • Time, Clocks, and the Ordering of Events in a Distributed System
      • Using Reasoning About Knowledge to analyze Distributed Systems
      • CAP Twelve Years Later: How the “Rules” Have Changed
      • A Note on Distributed Computing
  • Operating System
    • Index
  • Storage
    • Index
      • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
      • Exploiting Commutativity For Practical Fast Replication
      • Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
      • Building Consistent Transactions with Inconsistent Replication
      • Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System
      • Spanner: Google's Globally-Distributed Database
      • Bigtable: A Distributed Storage System for Structured Data
      • The Google File System
      • Dynamo: Amazon’s Highly Available Key-value Store
      • Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
      • Replicated Data Consistency Explained Through Baseball
      • Session Guarantees for Weakly Consistent Replicated Data
      • Flat Datacenter Storage
      • Small Cache, Big Effect: Provable Load Balancing forRandomly Partitioned Cluster Services
      • DistCache: provable load balancing for large-scale storage systems with distributed caching
      • Short Summaries
  • Coordination
    • Index
      • Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases
      • Paxos made simple
      • ZooKeeper: Wait-free coordination for Internet-scale systems
      • Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering
      • Keeping CALM: When Distributed Consistency is Easy
      • In Search of an Understandable Consensus Algorithm
      • A comprehensive study of Convergent and Commutative Replicated Data Types
  • Fault Tolerance
    • Index
      • The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services
      • Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
      • Capturing and Enhancing In Situ System Observability for Failure Detection
      • Check before You Change: Preventing Correlated Failures in Service Updates
      • Efficient Scalable Thread-Safety-Violation Detection
      • REPT: Reverse Debugging of Failures in Deployed Software
      • Redundancy Does Not Imply Fault Tolerance
      • Fixed It For You:Protocol Repair Using Lineage Graphs
      • The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance
      • Lineage-driven Fault Injection
      • Short Summaries
  • Cloud Computing
    • Index
      • Improving MapReduce Performance in Heterogeneous Environments
      • CLARINET: WAN-Aware Optimization for Analytics Queries
      • MapReduce: Simplified Data Processing on Large Clusters
      • Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
      • Resource Management
      • Apache Hadoop YARN: Yet Another Resource Negotiator
      • Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • Large-scale cluster management at Google with Borg
      • MapReduce Online
      • Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
      • Reining in the Outliers in Map-Reduce Clusters using Mantri
      • Effective Straggler Mitigation: Attack of the Clones
      • Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
      • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
      • Sparrow: Distributed, Low Latency Scheduling
      • Making Sense of Performance in Data Analytics Framework
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • Drizzle: Fast and Adaptable Stream Processing at Scale
      • Naiad: A Timely Dataflow System
      • The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale
      • Interruptible Tasks:Treating Memory Pressure AsInterrupts for Highly Scalable Data-Parallel Program
      • PACMan: Coordinated Memory Caching for Parallel Jobs
      • Multi-Resource Packing for Cluster Schedulers
      • Other interesting papers
  • Systems for ML
    • Index
      • A Berkeley View of Systems Challenges for AI
      • Tiresias: A GPU Cluster Managerfor Distributed Deep Learning
      • Gandiva: Introspective Cluster Scheduling for Deep Learning
      • Workshop papers
      • Hidden Technical Debt in Machine Learning Systems
      • Inference Systems
      • Parameter Servers and AllReduce
      • Federated Learning at Scale - Part I
      • Federated Learning at Scale - Part II
      • Learning From Non-IID data
      • Ray: A Distributed Framework for Emerging AI Applications
      • PipeDream: Generalized Pipeline Parallelism for DNN Training
      • DeepXplore: Automated Whitebox Testingof Deep Learning Systems
      • Distributed Machine Learning Misc.
  • ML for Systems
    • Index
      • Short Summaries
  • Machine Learning
    • Index
      • Deep Learning with Differential Privacy
      • Accelerating Deep Learning via Importance Sampling
      • A Few Useful Things to Know About Machine Learning
  • Video Analytics
    • Index
      • Scaling Video Analytics on Constrained Edge Nodes
      • Focus: Querying Large Video Datasets with Low Latency and Low Cost
      • NoScope: Optimizing Neural Network Queriesover Video at Scale
      • Live Video Analytics at Scale with Approximation and Delay-Tolerance
      • Chameleon: Scalable Adaptation of Video Analytics
      • End-to-end Learning of Action Detection from Frame Glimpses in Videos
      • Short Summaries
  • Networking
    • Index
      • Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec and a Transport
      • Learning in situ: a randomized experiment in video streaming
      • Short Summaries
  • Serverless
    • Index
      • Serverless Computing: One Step Forward, Two Steps Back
      • Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads
      • SAND: Towards High-Performance Serverless Computing
      • Pocket: Elastic Ephemeral Storage for Serverless Analytics
      • Fault-tolerant and Transactional Stateful Serverless Workflows
  • Resource Disaggregation
    • Index
  • Edge Computing
    • Index
  • Security/Privacy
    • Index
      • Differential Privacy
      • Honeycrisp: Large-Scale Differentially Private Aggregation Without a Trusted Core
      • Short Summaries
  • Misc.
    • Index
      • Rate Limiting
      • Load Balancing
      • Consistency Models in Distributed System
      • Managing Complexity
      • System Design
      • Deep Dive into the Spark Scheduler
      • The Actor Model
      • Python Global Interpreter Lock
      • About Research and PhD
Powered by GitBook
On this page
  • TL;DR:
  • Summary:
  • Definitions:

Was this helpful?

  1. Storage
  2. Index

Session Guarantees for Weakly Consistent Replicated Data

http://www.cs.utexas.edu/~lorenzo/corsi/cs380d/papers/SessionGuaranteesBayou.pdf

TL;DR:

Session Guarantees provides a view of the database that is consistent with their own actions, even if read and write from various, potentially inconsistent servers.

Summary:

Eventually consistent systems are great in terms of availability. However, they may not be satisfactory for some applications seeking stronger guarantees. Session Guarantees[1] can easily be layered[2] on top of a weakly-consistent replicated data system. We assume the underlying systems are eventually consistent and symmetric, which means Reads and Writes may be performed at any server.

Read Your Writes: If Read R follows Write W in a session and R is performed at server S at time t, then W is included in DB(S,t). In other words, each user's reads should reflect the client's prior writes. This means that, for example, if I successfully add an apple to my shopping cart, it should be in the shopping cart after a page refresh.

Monotonic Reads: If Read R1 occurs before R2 in a session and R1 accesses server S1 at time t1 and R2 accesses server S2 at time t2, then RelevantWrites(S1,t1,R1) is a subset of DB(S2,t2). In other words, If a process performs read R1, then a later Read R2 cannot observe a state prior to the writes which were reflected in R1. It guarantees clients to observe a database that is increasingly up-to-date over time.

Write Follow Reads(respect causality) : If Read R1 precedes Write W2 in a session and R1 is performed at server S1 at time t1, then, for any server S2, if W2 is in DB(S2) then any W1 in RelevantWrites(S1,t1,R1) is also in DB(S2) and WriteOrder(W1,W2). Basically, it means causality between reads and writes are preserved.

Monotonic Writes: If Read R follows Write W in a session and R is performed at server S at time t, then W is included in DB(S,t). It basically says that writes must follow previous writes within the session.

Definitions:

1) DB(S,t) is the ordered sequence of Writes that have been received by server S at or before time t.

2) RelevantWrites(S,t,R) denotes the function that returns the smallest set of Writes that is complete[3] for Read R and DB(S,t).

3) WriteOrder(W1,W2) be a boolean predicate indicating whether Write W1 should be ordered before Write W2.

[1] A session is an abstraction for the sequence of read and write operations performed during the execution of an application. For example, it could be a session which is created for each user and must exist for the lifetime of the user's account.

[2] They can be provided using vector clocks.

[3] We say a Write set WS is complete for Read R and DB(S,t) if and only if WS is a subset of DB(S,t) and for any set WS2 that contains WS and is also a subset of DB(S,t), the result of R applied to WS2 is the same as the result of R applied to DB(S,t).

PreviousReplicated Data Consistency Explained Through BaseballNextFlat Datacenter Storage

Last updated 5 years ago

Was this helpful?