Random Notes
  • Introduction
  • Reading list
  • Theory
    • Index
      • Impossibility of Distributed Consensus with One Faulty Process
      • Time, Clocks, and the Ordering of Events in a Distributed System
      • Using Reasoning About Knowledge to analyze Distributed Systems
      • CAP Twelve Years Later: How the “Rules” Have Changed
      • A Note on Distributed Computing
  • Operating System
    • Index
  • Storage
    • Index
      • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
      • Exploiting Commutativity For Practical Fast Replication
      • Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
      • Building Consistent Transactions with Inconsistent Replication
      • Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System
      • Spanner: Google's Globally-Distributed Database
      • Bigtable: A Distributed Storage System for Structured Data
      • The Google File System
      • Dynamo: Amazon’s Highly Available Key-value Store
      • Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
      • Replicated Data Consistency Explained Through Baseball
      • Session Guarantees for Weakly Consistent Replicated Data
      • Flat Datacenter Storage
      • Small Cache, Big Effect: Provable Load Balancing forRandomly Partitioned Cluster Services
      • DistCache: provable load balancing for large-scale storage systems with distributed caching
      • Short Summaries
  • Coordination
    • Index
      • Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases
      • Paxos made simple
      • ZooKeeper: Wait-free coordination for Internet-scale systems
      • Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering
      • Keeping CALM: When Distributed Consistency is Easy
      • In Search of an Understandable Consensus Algorithm
      • A comprehensive study of Convergent and Commutative Replicated Data Types
  • Fault Tolerance
    • Index
      • The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services
      • Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
      • Capturing and Enhancing In Situ System Observability for Failure Detection
      • Check before You Change: Preventing Correlated Failures in Service Updates
      • Efficient Scalable Thread-Safety-Violation Detection
      • REPT: Reverse Debugging of Failures in Deployed Software
      • Redundancy Does Not Imply Fault Tolerance
      • Fixed It For You:Protocol Repair Using Lineage Graphs
      • The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance
      • Lineage-driven Fault Injection
      • Short Summaries
  • Cloud Computing
    • Index
      • Improving MapReduce Performance in Heterogeneous Environments
      • CLARINET: WAN-Aware Optimization for Analytics Queries
      • MapReduce: Simplified Data Processing on Large Clusters
      • Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
      • Resource Management
      • Apache Hadoop YARN: Yet Another Resource Negotiator
      • Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • Large-scale cluster management at Google with Borg
      • MapReduce Online
      • Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
      • Reining in the Outliers in Map-Reduce Clusters using Mantri
      • Effective Straggler Mitigation: Attack of the Clones
      • Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
      • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
      • Sparrow: Distributed, Low Latency Scheduling
      • Making Sense of Performance in Data Analytics Framework
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • Drizzle: Fast and Adaptable Stream Processing at Scale
      • Naiad: A Timely Dataflow System
      • The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale
      • Interruptible Tasks:Treating Memory Pressure AsInterrupts for Highly Scalable Data-Parallel Program
      • PACMan: Coordinated Memory Caching for Parallel Jobs
      • Multi-Resource Packing for Cluster Schedulers
      • Other interesting papers
  • Systems for ML
    • Index
      • A Berkeley View of Systems Challenges for AI
      • Tiresias: A GPU Cluster Managerfor Distributed Deep Learning
      • Gandiva: Introspective Cluster Scheduling for Deep Learning
      • Workshop papers
      • Hidden Technical Debt in Machine Learning Systems
      • Inference Systems
      • Parameter Servers and AllReduce
      • Federated Learning at Scale - Part I
      • Federated Learning at Scale - Part II
      • Learning From Non-IID data
      • Ray: A Distributed Framework for Emerging AI Applications
      • PipeDream: Generalized Pipeline Parallelism for DNN Training
      • DeepXplore: Automated Whitebox Testingof Deep Learning Systems
      • Distributed Machine Learning Misc.
  • ML for Systems
    • Index
      • Short Summaries
  • Machine Learning
    • Index
      • Deep Learning with Differential Privacy
      • Accelerating Deep Learning via Importance Sampling
      • A Few Useful Things to Know About Machine Learning
  • Video Analytics
    • Index
      • Scaling Video Analytics on Constrained Edge Nodes
      • Focus: Querying Large Video Datasets with Low Latency and Low Cost
      • NoScope: Optimizing Neural Network Queriesover Video at Scale
      • Live Video Analytics at Scale with Approximation and Delay-Tolerance
      • Chameleon: Scalable Adaptation of Video Analytics
      • End-to-end Learning of Action Detection from Frame Glimpses in Videos
      • Short Summaries
  • Networking
    • Index
      • Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec and a Transport
      • Learning in situ: a randomized experiment in video streaming
      • Short Summaries
  • Serverless
    • Index
      • Serverless Computing: One Step Forward, Two Steps Back
      • Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads
      • SAND: Towards High-Performance Serverless Computing
      • Pocket: Elastic Ephemeral Storage for Serverless Analytics
      • Fault-tolerant and Transactional Stateful Serverless Workflows
  • Resource Disaggregation
    • Index
  • Edge Computing
    • Index
  • Security/Privacy
    • Index
      • Differential Privacy
      • Honeycrisp: Large-Scale Differentially Private Aggregation Without a Trusted Core
      • Short Summaries
  • Misc.
    • Index
      • Rate Limiting
      • Load Balancing
      • Consistency Models in Distributed System
      • Managing Complexity
      • System Design
      • Deep Dive into the Spark Scheduler
      • The Actor Model
      • Python Global Interpreter Lock
      • About Research and PhD
Powered by GitBook
On this page
  • TL;DR:
  • Summary:
  • Lesson Learned:
  • Reference:

Was this helpful?

  1. Storage
  2. Index

Bigtable: A Distributed Storage System for Structured Data

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

TL;DR:

BigTable is a sparse, distributed, persistent, multi-dimensional[1], sorted map.

Summary:

Problem Statement: GFS provides us a reliable, scalable distributed file storage, but it does not provide any facility for structuring the data contained in the files beyond a hierarchical directory structure. Thus, the authors built BigTable and wrote it up.

BigTable is most useful if 1. There is no need to join each data table with another 2. Data need to be updated. 3. Range queries are common.

In the Bigtable data model, data is grouped in tables. Each record in one table must have a string identifier unique in that table. Each table is defined to have a set of “column families”. Columns are grouped into sets called column families, and a qualifier is used to distinguish between two members of a column family. A column is identified by a family:qualifier pair. A record has values, that is the point of having a record. Each of those values is associated with a timestamp when it was created.

BigTable provides an API to application developers that allows the typical operations you might expect; creation and deletion of tables and column families, writing data and deleting columns from a row. Transactions are supported at the row level, but not across several row keys (just like PNUTS). However, write batching is implemented to improve throughput.

BigTable is built on top of GFS, Chubby lock service[2] and SSTable. Bigtable data is stored in the SSTable file format. An SSTable provides a persistent ordered immutable map from keys to values, where both keys and values are arbitrary byte strings.

BigTables are split into lexicographically ordered(by row key) chunks called tablets. BigTable tablet servers each maintain responsibility for a number of tablets. We don't need to explicitly replicate tablet servers because every update to a tablet is reflected in GFS. Tablet servers keep the most recent updates to a tablet in an in-memory representation called a memtable.

Tablets are located via a three-tier hierarchical lookup mechanism. The location of a root tablet, which contains metadata for a BigTable instance, is located in Chubby and can be read from the filesystem there. The root tablet contains the locations of other metadata tablets, which themselves point to the location of data tablets. Together the root and metadata tablets form the METADATA table, which is itself a BigTable table. Each row in the METADATA table maps the pair (table name, last row) to a location for a tablet whose last row is as given.

The master is responsible for assigning tablets to tablet servers, detecting the addition and expiration of tablet servers, balancing tablet-server load, and garbage collection of files in GFS.

Lesson Learned:

1. Delay adding new features until it is clear how the new features will be used 2. The importance of proper system-level monitoring 3. The value of simple designs…code and design clarity are of immense help in code maintenance and debugging

[1] "Multi-dimensional refers to the fact that the index used to lookup data may be comprised of several dimensions. A simple key->value lookup is one-dimensional. (row, column)->value is two-dimensional. BigTables may be multi-dimensional as the index maps from (row, column, time, column qualifier) onto a value. In particular the idea that you can index values by time is novel - so you can retrieve the previous versions of a value by timestamp if you like. This implies that no data are ever deleted from a BigTable, and this is indeed the case. Once a value is written, it’s written for life, uniquely identified by its timestamp. Well - almost. Applications may specify to BigTable that only the most recent n or only versions that were written recently should be kept, and BigTable is free to garbage collect those that are not."

[2] BigTable uses Chubby for a variety of tasks: 1. To ensure there is at most one active master at any time. 2. To store the bootstrap location of BigTable data(root tablet). 3. To discover BigTable servers and finalize tablet server death. 4. To store ACLs. Thus, Chubby unavailable = BigTable unavailable.

Reference:

PreviousSpanner: Google's Globally-Distributed DatabaseNextThe Google File System

Last updated 5 years ago

Was this helpful?

https://www.the-paper-trail.org/post/2008-10-29-bigtable-googles-distributed-data-store/
http://ethanp.github.io/blog/2016/04/10/bigtable-paper-summary/