Random Notes
  • Introduction
  • Reading list
  • Theory
    • Index
      • Impossibility of Distributed Consensus with One Faulty Process
      • Time, Clocks, and the Ordering of Events in a Distributed System
      • Using Reasoning About Knowledge to analyze Distributed Systems
      • CAP Twelve Years Later: How the “Rules” Have Changed
      • A Note on Distributed Computing
  • Operating System
    • Index
  • Storage
    • Index
      • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
      • Exploiting Commutativity For Practical Fast Replication
      • Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
      • Building Consistent Transactions with Inconsistent Replication
      • Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System
      • Spanner: Google's Globally-Distributed Database
      • Bigtable: A Distributed Storage System for Structured Data
      • The Google File System
      • Dynamo: Amazon’s Highly Available Key-value Store
      • Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
      • Replicated Data Consistency Explained Through Baseball
      • Session Guarantees for Weakly Consistent Replicated Data
      • Flat Datacenter Storage
      • Small Cache, Big Effect: Provable Load Balancing forRandomly Partitioned Cluster Services
      • DistCache: provable load balancing for large-scale storage systems with distributed caching
      • Short Summaries
  • Coordination
    • Index
      • Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases
      • Paxos made simple
      • ZooKeeper: Wait-free coordination for Internet-scale systems
      • Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering
      • Keeping CALM: When Distributed Consistency is Easy
      • In Search of an Understandable Consensus Algorithm
      • A comprehensive study of Convergent and Commutative Replicated Data Types
  • Fault Tolerance
    • Index
      • The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services
      • Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
      • Capturing and Enhancing In Situ System Observability for Failure Detection
      • Check before You Change: Preventing Correlated Failures in Service Updates
      • Efficient Scalable Thread-Safety-Violation Detection
      • REPT: Reverse Debugging of Failures in Deployed Software
      • Redundancy Does Not Imply Fault Tolerance
      • Fixed It For You:Protocol Repair Using Lineage Graphs
      • The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance
      • Lineage-driven Fault Injection
      • Short Summaries
  • Cloud Computing
    • Index
      • Improving MapReduce Performance in Heterogeneous Environments
      • CLARINET: WAN-Aware Optimization for Analytics Queries
      • MapReduce: Simplified Data Processing on Large Clusters
      • Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
      • Resource Management
      • Apache Hadoop YARN: Yet Another Resource Negotiator
      • Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • Large-scale cluster management at Google with Borg
      • MapReduce Online
      • Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
      • Reining in the Outliers in Map-Reduce Clusters using Mantri
      • Effective Straggler Mitigation: Attack of the Clones
      • Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
      • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
      • Sparrow: Distributed, Low Latency Scheduling
      • Making Sense of Performance in Data Analytics Framework
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • Drizzle: Fast and Adaptable Stream Processing at Scale
      • Naiad: A Timely Dataflow System
      • The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale
      • Interruptible Tasks:Treating Memory Pressure AsInterrupts for Highly Scalable Data-Parallel Program
      • PACMan: Coordinated Memory Caching for Parallel Jobs
      • Multi-Resource Packing for Cluster Schedulers
      • Other interesting papers
  • Systems for ML
    • Index
      • A Berkeley View of Systems Challenges for AI
      • Tiresias: A GPU Cluster Managerfor Distributed Deep Learning
      • Gandiva: Introspective Cluster Scheduling for Deep Learning
      • Workshop papers
      • Hidden Technical Debt in Machine Learning Systems
      • Inference Systems
      • Parameter Servers and AllReduce
      • Federated Learning at Scale - Part I
      • Federated Learning at Scale - Part II
      • Learning From Non-IID data
      • Ray: A Distributed Framework for Emerging AI Applications
      • PipeDream: Generalized Pipeline Parallelism for DNN Training
      • DeepXplore: Automated Whitebox Testingof Deep Learning Systems
      • Distributed Machine Learning Misc.
  • ML for Systems
    • Index
      • Short Summaries
  • Machine Learning
    • Index
      • Deep Learning with Differential Privacy
      • Accelerating Deep Learning via Importance Sampling
      • A Few Useful Things to Know About Machine Learning
  • Video Analytics
    • Index
      • Scaling Video Analytics on Constrained Edge Nodes
      • Focus: Querying Large Video Datasets with Low Latency and Low Cost
      • NoScope: Optimizing Neural Network Queriesover Video at Scale
      • Live Video Analytics at Scale with Approximation and Delay-Tolerance
      • Chameleon: Scalable Adaptation of Video Analytics
      • End-to-end Learning of Action Detection from Frame Glimpses in Videos
      • Short Summaries
  • Networking
    • Index
      • Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec and a Transport
      • Learning in situ: a randomized experiment in video streaming
      • Short Summaries
  • Serverless
    • Index
      • Serverless Computing: One Step Forward, Two Steps Back
      • Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads
      • SAND: Towards High-Performance Serverless Computing
      • Pocket: Elastic Ephemeral Storage for Serverless Analytics
      • Fault-tolerant and Transactional Stateful Serverless Workflows
  • Resource Disaggregation
    • Index
  • Edge Computing
    • Index
  • Security/Privacy
    • Index
      • Differential Privacy
      • Honeycrisp: Large-Scale Differentially Private Aggregation Without a Trusted Core
      • Short Summaries
  • Misc.
    • Index
      • Rate Limiting
      • Load Balancing
      • Consistency Models in Distributed System
      • Managing Complexity
      • System Design
      • Deep Dive into the Spark Scheduler
      • The Actor Model
      • Python Global Interpreter Lock
      • About Research and PhD
Powered by GitBook
On this page
  • TL;DR:
  • Summary
  • Hybrid Logical Clock(HLC).
  • Related post:

Was this helpful?

  1. Coordination
  2. Index

Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases

https://cse.buffalo.edu/tech-reports/2014-04.pdf

PreviousIndexNextPaxos made simple

Last updated 3 years ago

Was this helpful?

TL;DR:

Hybrid Logical Clock captures the causality relationship like logical clocks, and enables easy identification of consistent snapshots in distributed systems. Dually, HLC can be used in lieu of physical/NTP clocks since it maintains its logical clock to be always close to the NTP clock.

Summary

I read this paper when I was interning at Dropbox. I was on the Filesystem team and they were trying to cheaply provide a general consistency primitive in the Filesystem. One way is to use Logical Clock(aka Lamport Clock), but it is too weak to provide this. They provide consistency with respect to invariants (like file IDs only existing in one place), but still provide nonsensical views of data. It’s easy to craft a case where the Lamport timestamps will order something that happened three months ago after something that happened yesterday. The timestamps don’t have any grounding in reality, so they’re “allowed” to do this.

In general, 1. Logical Clock(LC) is undesirable because it is not possible to query events in relation to physical time. Thus, we will face the problem of unbound drift. 2. Vector Clock(VC) requires too much space. (i.e. in the order of nodes in the system). 3. Physical Time(PT) suffers the problem of uncertainty intervals. It may also cause the timestamps to go backwards. 4. True Time(TT) is proposed by Google in their Spanner paper. TT relies on a well engineered tight clock synchronization available at all nodes thanks to GPS clocks and atomic clocks made available at each cluster. However, TT requires special hardware and a custom-build tight clock synchronization protocol, which is infeasible for many systems. It also delay events to satisfy the invariants.

Hybrid Logical Clock(HLC).

HLC maintains its logical clock to be always close to NTP[1] clock. More importantly, it preserves the property of LC.(i.e. if e happens before f then hlc.e < hlc.f) HLC can run alongside applications using NTP. Moreover, unlike NTP, HLC does not require a server-client architecture. It also works for p2p systems.

The goal of HLC is to provide one-way causality detection similar to that provided by LC, while maintaining the clock value to be always close to the physical/NTP clock.

Given a distributed system, assign each event e a timestamp, l.e, such that 1. e hb f ⇒ l.e < l.f, 2. Space requirement for l.e is O(1) integers, 3. l.e is represented with bounded space, 4. l.e is close to pt.e, i.e., |l.e − pt.e| is bounded

Please see the paper for the naive implementation and the final algorithm. The root of the unbounded drift problem(of the naive algorithm) is due to the naive algorithm using l to maintain both the maximum of pt values seen so far and the logical clock increments from new events (local, send, receive). Thus, , the l.j in the naive algorithm is expanded to two parts: l.j and c.j. The first part l.j is introduced as a level of indirection to maintain the maximum of pt information learned so far, and c is used for capturing causality updates only when l values are equal.

Some final notes: HLC is useful as a timestamping mechanism in multiversion distributed databases, such as Spanner. As far as I know, HLC is implement in Dropbox's new Distributed File System and , an open source clone of Spanner.

[1] Network Time Protocol:

Related post:

CockroachDB
https://www.lifewire.com/network-time-protocol-817945
Hybrid Logical Clocks