Random Notes
  • Introduction
  • Reading list
  • Theory
    • Index
      • Impossibility of Distributed Consensus with One Faulty Process
      • Time, Clocks, and the Ordering of Events in a Distributed System
      • Using Reasoning About Knowledge to analyze Distributed Systems
      • CAP Twelve Years Later: How the “Rules” Have Changed
      • A Note on Distributed Computing
  • Operating System
    • Index
  • Storage
    • Index
      • Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks
      • Exploiting Commutativity For Practical Fast Replication
      • Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
      • Building Consistent Transactions with Inconsistent Replication
      • Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System
      • Spanner: Google's Globally-Distributed Database
      • Bigtable: A Distributed Storage System for Structured Data
      • The Google File System
      • Dynamo: Amazon’s Highly Available Key-value Store
      • Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
      • Replicated Data Consistency Explained Through Baseball
      • Session Guarantees for Weakly Consistent Replicated Data
      • Flat Datacenter Storage
      • Small Cache, Big Effect: Provable Load Balancing forRandomly Partitioned Cluster Services
      • DistCache: provable load balancing for large-scale storage systems with distributed caching
      • Short Summaries
  • Coordination
    • Index
      • Logical Physical Clocks and Consistent Snapshots in Globally Distributed Databases
      • Paxos made simple
      • ZooKeeper: Wait-free coordination for Internet-scale systems
      • Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering
      • Keeping CALM: When Distributed Consistency is Easy
      • In Search of an Understandable Consensus Algorithm
      • A comprehensive study of Convergent and Commutative Replicated Data Types
  • Fault Tolerance
    • Index
      • The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services
      • Gray Failure: The Achilles’ Heel of Cloud-Scale Systems
      • Capturing and Enhancing In Situ System Observability for Failure Detection
      • Check before You Change: Preventing Correlated Failures in Service Updates
      • Efficient Scalable Thread-Safety-Violation Detection
      • REPT: Reverse Debugging of Failures in Deployed Software
      • Redundancy Does Not Imply Fault Tolerance
      • Fixed It For You:Protocol Repair Using Lineage Graphs
      • The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance
      • Lineage-driven Fault Injection
      • Short Summaries
  • Cloud Computing
    • Index
      • Improving MapReduce Performance in Heterogeneous Environments
      • CLARINET: WAN-Aware Optimization for Analytics Queries
      • MapReduce: Simplified Data Processing on Large Clusters
      • Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
      • Resource Management
      • Apache Hadoop YARN: Yet Another Resource Negotiator
      • Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
      • Dominant Resource Fairness: Fair Allocation of Multiple Resource Types
      • Large-scale cluster management at Google with Borg
      • MapReduce Online
      • Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
      • Reining in the Outliers in Map-Reduce Clusters using Mantri
      • Effective Straggler Mitigation: Attack of the Clones
      • Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
      • Discretized Streams: Fault-Tolerant Streaming Computation at Scale
      • Sparrow: Distributed, Low Latency Scheduling
      • Making Sense of Performance in Data Analytics Framework
      • Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks
      • Drizzle: Fast and Adaptable Stream Processing at Scale
      • Naiad: A Timely Dataflow System
      • The Dataflow Model:A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale
      • Interruptible Tasks:Treating Memory Pressure AsInterrupts for Highly Scalable Data-Parallel Program
      • PACMan: Coordinated Memory Caching for Parallel Jobs
      • Multi-Resource Packing for Cluster Schedulers
      • Other interesting papers
  • Systems for ML
    • Index
      • A Berkeley View of Systems Challenges for AI
      • Tiresias: A GPU Cluster Managerfor Distributed Deep Learning
      • Gandiva: Introspective Cluster Scheduling for Deep Learning
      • Workshop papers
      • Hidden Technical Debt in Machine Learning Systems
      • Inference Systems
      • Parameter Servers and AllReduce
      • Federated Learning at Scale - Part I
      • Federated Learning at Scale - Part II
      • Learning From Non-IID data
      • Ray: A Distributed Framework for Emerging AI Applications
      • PipeDream: Generalized Pipeline Parallelism for DNN Training
      • DeepXplore: Automated Whitebox Testingof Deep Learning Systems
      • Distributed Machine Learning Misc.
  • ML for Systems
    • Index
      • Short Summaries
  • Machine Learning
    • Index
      • Deep Learning with Differential Privacy
      • Accelerating Deep Learning via Importance Sampling
      • A Few Useful Things to Know About Machine Learning
  • Video Analytics
    • Index
      • Scaling Video Analytics on Constrained Edge Nodes
      • Focus: Querying Large Video Datasets with Low Latency and Low Cost
      • NoScope: Optimizing Neural Network Queriesover Video at Scale
      • Live Video Analytics at Scale with Approximation and Delay-Tolerance
      • Chameleon: Scalable Adaptation of Video Analytics
      • End-to-end Learning of Action Detection from Frame Glimpses in Videos
      • Short Summaries
  • Networking
    • Index
      • Salsify: Low-Latency Network Video through Tighter Integration between a Video Codec and a Transport
      • Learning in situ: a randomized experiment in video streaming
      • Short Summaries
  • Serverless
    • Index
      • Serverless Computing: One Step Forward, Two Steps Back
      • Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads
      • SAND: Towards High-Performance Serverless Computing
      • Pocket: Elastic Ephemeral Storage for Serverless Analytics
      • Fault-tolerant and Transactional Stateful Serverless Workflows
  • Resource Disaggregation
    • Index
  • Edge Computing
    • Index
  • Security/Privacy
    • Index
      • Differential Privacy
      • Honeycrisp: Large-Scale Differentially Private Aggregation Without a Trusted Core
      • Short Summaries
  • Misc.
    • Index
      • Rate Limiting
      • Load Balancing
      • Consistency Models in Distributed System
      • Managing Complexity
      • System Design
      • Deep Dive into the Spark Scheduler
      • The Actor Model
      • Python Global Interpreter Lock
      • About Research and PhD
Powered by GitBook
On this page
  • Summary:
  • Related Links:

Was this helpful?

  1. Fault Tolerance
  2. Index

The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance

https://www.cs.rice.edu/~angchen/papers/sigcomm-2016.pdf

PreviousFixed It For You:Protocol Repair Using Lineage GraphsNextLineage-driven Fault Injection

Last updated 5 years ago

Was this helpful?

Summary:

Distributed systems are difficult to program and near impossible to debug. Existing work(e.g. Netsight NSDI14') can tell you what happened, but it's not enough for us to identify the root cause. The paper is motivated by the recent work on data provenance and the authors introduce a novel concept which they called differential provenance (DiffProf).

Data provenance tracks the causal connections between network states and state changes. Vertices in the provenance graph represents event or state and the edges represent the causality. Thus, the provenance tree can give us a recursive explanation of an event/state. The insight of this paper(as well as our CIDR19' paper) is that we can get some ideas about what went wrong by looking at the difference between the good reference and a bad symptom.

The naive solution is to do a subtraction(finding all vertexes that are different in two trees). However, because distributed systems are very complicated, a small initial difference will lead to a substantially different provenance tree(butterfly effect). Thus, the diff tree could even be larger than the original trees.

The algorithm starts with an initial equivalence relation between the packets(establish a mapping between different packet fields.). Then, we will create taints for equivalent fields, propagate taints up the tree and repeat until we find a non-equivalent node. We are going to roll back the execution to that non-equivalent point and change the "faulty" node to its equivalent and roll forward the execution to align the trees. We will repeat all these steps until two provenance graphs are completely equivalent. Finally, we will output out changes(which might be the root cause of the bug)

Related Links:

https://www.youtube.com/watch?v=MlqmUyoK2hEwww.youtube.com